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Reconstructing noisy dynamical systems by triangulations
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We show how to construct triangulations of noisy data from dynamical systems. We model the dynamics
using piecewise linear orC1 models defined over the triangulation. The number and positions of vertices of the
triangulation are selected by the minimum description length criterion. We test the method on two artificial
data sets and on experimental data from a chaotic electronic circuit. The models reproduce the qualitative
aspects of the data as well as quantitative aspects such as correlation dimension and periodic points.
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I. INTRODUCTION

This paper deals with an approach to modeling dynam
systems from data, particularly scalar-valued time series
recent years there has been a great deal of work in the
of modeling from time series with particular emphasis
low-dimensional nonlinear systems that exhibit chaotic
havior. This paper relates closely to the work described in@1#
and @2#. Mees@1# deals with the triangulation of noise-fre
data, while Mees and Judd@2# use the concept ofminimum
description length~MDL ! to select the optimal model from
given class~specifically, radial basis models!. The present
work uses piecewise linear or piecewiseC1 models based on
the triangulation of the state space.

In comparison to other model classes~see, for example
@3–5#! we note that our model class is very flexible in
ability to fit the data, is continuous, local, and does not p
sess any artificial symmetry~cf. radial basis models.! We
also note that the size of the model itself will be determin
from the data, reducing the number of arbitrarily chosen
rameters.

Rather than simply constructing the triangulation of
the data points we attempt to find a ‘‘minimal’’ triangulatio
that best models the data. The criterion that is used to se
the minimal triangulation is that of description length,
described by Rissanen@6#. The essential idea adopted here
that we choose the model with the shortest code length~in
some optimal encoding scheme! that enables us to reproduc
completely the data set. Following a description of t
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method, we discuss some example applications and conc
with a summary, caveats, and comments on future resea

II. OUTLINE OF METHOD

Consider a dynamical system with state vectorszPM ,
whereM is an n-dimensional manifold. Assume that th
dynamics are described by the equation

zt115g~zt!1j t ,

where j t is the dynamical noise present. We observe
system through a measurement processf:M→R such that

yt5f~zt!1h t ,

whereh t is the observational noise. We then embed@7,8# the
data set$yt% in d dimensions to give states$xt%. An example
of such an embedding is a time-delay embedding with fix
‘‘lag’’ t given by

xt5~yt , . . . ,yt2~d21!t!PRd;

however, the embedding need not be as regular as this,
indeed we may choose particular embedding strategies
pending on the information we wish to extract from th
model. We describe the dynamics of the embedded sys
by

yt115 f ~xt!1e t ~1!

and it is precisely this functionf :Rd→R that we desire to
model. In general, the dynamics should be described
yt115 f (xt ,e t); however, for small noise, Eq.~1! is usually a
good approximation.e t is a random variate about which w
can, in general, say very little.
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88 55ALLIE, MEES, JUDD, AND WATSON
A. Interpolation on triangulations

The map f defines a hypersurface inRd11. Our model
consists of describing this hypersurface in some way. To
this, we make use of piecewise interpolation on triangu
tions ind dimensions.

A triangulation of a set of pointsVPRd is a collection of
d-dimensional simplices with disjoint interiors and vertic
chosen fromV. There are many triangulations for a given s
of points. One of the more useful is the Delaunay triangu
tion @9#, which we describe by considering its dual, the D
richlet tesselation.~The Dirichlet tesselation is also called th
Voronoi tesselation, natural-neighbor tiling, or Thiessen
ing in the literature.! Given a set of verticesV5$v i%, we
associate with eachv i the region consisting of all points tha
are closer tov i than to any other point inV. That is, the tile
belonging tov i is

T~v i !5$xPRd:ux2v i u,ux2v j u; jÞ i %.

If two tiles share a face, then we say that the correspond
vertices are neighbors. The collection of such tiles forms
Dirichlet tesselation. The dual of this structure, in which w
join neighbors by line segments, is the Delaunay triangu
tion of V. The Delaunay triangulation has the property th
its simplices are most nearly equiangular. The Delaunay
angulation is discussed in detail in@10# and efficient algo-
rithms for computing the Delaunay triangulation are d
scribed in@11#. Figure 1 shows the Delaunay triangulatio
and its dual for eight points in the plane.

We now describe how to use triangulations to appro
mate a surface.

Definition. l i(x), iPN(x), are local coordinatesfor x
with respect to$v j% j51

nv if

x5 (
iPN~x!

l i~x!v i

and

(
iPN~x!

l i~x!51,

whereN(x) is a set of indices to the set$v j%.
An approximation tof (x) is then given by

FIG. 1. Delaunay triangulation~heavy lines! and its dual, the
Dirchlet tesselation~light lines!, for eight points~circles! in the
plane.
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f̂ ~x!5 (
iPN~x!

l i~x! f ~v i !.

Some results regarding this type of approximation w
proved in@1#. They are reproduced here for convenience

~i! If fPC1 then f̂ (x)5 f (x)1o(D), where

D5diameter@$x%ø$v i : iPN~x!%#.

~ii ! If f is affine thenf̂5 f .
~iii ! If we chooseN(x) to index the simplex containing

x then our approximation is piecewise linear and continuo
in x.

~iv! If we chooseN(x) so that thel i(x) are the so-called
subtile weights@10# then our approximation isC1 in x for
xPco$v j%\ø$v j%, where co~x! denotes the convex hull o
x. These weights~also called natural-neighbor coordinate!
are defined as follows. If we were to add the pointx to the
tesselation, it would create a tileT(x) that is the union of
sections of tiles from the existing tesselation. The sub
weight corresponding to a vertexv i is the normalized~Le-
besgue! volume of the section ofT(v i), which would belong
to x.

Item ~i! above justifies our use of the Delaunay triangu
tion. The Delaunay triangulation has the property that
minimizes, on average, the diameter of the simplices form
@9,12,13,1# and hence minimizes the average error in a
proximation that is due to the choice of triangulation.

We would expect this model class to perform at least
well as other local models and to compare well with glob
models such as radial basis models. A comparison of MD
selected radial basis models and the models described he
a subject for future research. For data from nonlinear
namical systems where the dynamics is not overwhelmed
noise, we would expect our models to perform significan
better than statistical models such as the threshold aut
gressive models of Tong@14#. Of course, for any given data
set, the choice of model is best determined by direct co
parison. It is hoped that MDL and flexible model class
~which incorporate other models as special cases! make the
selection somewhat less arbitrary, but we are still far fro
being able to determine automatically the best model fo
given case.

B. Fitting to noisy data

The approximation above assumes that we know the
ues off (v i) exactly. In general, of course, this is not true.
our v i are data points then we have noisy data values a
approximation tof (v i). If the v i are not data points, then w
have noa priori information about thef (v i). From now on,
we will label the approximation tof (v i) as hi5 f̂ (v i) and
call thehi ‘‘heights.’’ The approximation is now written

f̂ ~x!5 (
iPN~x!

l i~x!hi ,

whereN(x) is now a set of indices to the set$v j%. We might
choose the set$v i% to be a subset of our data points$xt%, but
it is not required.

Assuming we have chosen thev i in some way, we wish to
choose thehi so as to give the best approximation tof given
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55 89RECONSTRUCTING NOISY DYNAMICAL SYSTEMS BY . . .
$xt% and$yt%. We define the local coordinates as previou
for jPN(xi) andl j (xi)50 for j¹N(xi). We further define
a matrixL with elementsL i j5l j (xi). We can then write the
approximation as a matrix equation thus

f̂ ~xi !5 (
jPN~xi !

l j~xi !hj

5(
j

l j~xi !hj ~2!

5~Lh! i , ~3!

whereh5(h1 , . . . ,hnv)
T. Recalling that we would likeyi to

be near f̂ (xi) and takinge t in 1, we solve for thehi by
solving the least-squares problem defined by minimizing

J~v,h!5~y2Lh!T~y2Lh! ~4!

over h, where y5(y1 , . . . ,yn)
T and v denotes the set o

vertices. Let the minimum ofJ(v,h) overh beJ(v). Speci-
fying v determines the model fully, and we now consid
how to do this.

C. Vertex selection

We now deal with the problem of how to select the ve
tices. We choose thev i from $xt% initially, but then allow the
vertices to move in an attempt to find a better model. In or
to obtain a set of vertices which are nearly optimal for
given model size~number of vertices!, we have used an al
gorithm of model expansion and contraction. We allow t
model to grow byk vertices by selecting thek data points
with the worst fitted data values. That is, the data points w
the largest values ofuyt2 f̂ (xt)u. We then remove thek ver-
tices which are~or are closest to! the data points which are
best fitted. This process of growing and shrinking the mo
continues until either there is no change in the set of vert
or J(v) does not decrease.

The algorithm is as follows.
~i! Construct the initial affine model usingd11 vertices

that form a single simplex containing the entire data set.
~ii ! Select thek data points with the worst-fitted data va

ues. Bring these points into the triangulation.
~iii ! Select thek vertices with the best-fitted data value

If the vertex is not a data point, use the closest data po
Remove these points from the triangulation.

~iv! Add a small random perturbation to the vertices a
keep the positions of vertices that give the smallestJ(v).

~v! If the triangulation has changed andJ(v) has de-
creased, go to step~ii !.

~vi! Calculate the description length for the current mo
size.

~vii ! Have we found a minimum of description length as
function of number of vertices? If so, stop now.

~viii ! Increase the model size by one by bringing t
worst-fitted point into the triangulation and go to step~ii !.

We identify a minimum in the description length~DL! as a
function of model size by storing the DL for each number
r
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vertices and declaring a local minimum if we have not fou
a smaller value after a certain number of increases in mo
size.

Cubanski and Cyganski@15# describe an algorithm tha
appears to be similar to our own. In particular they perfo
an optimal selection of vertices by a similar process of
pansion and contraction. Their approach differs in that th
use a fixed~and arbitrary! number of vertices, and the intro
duction of new vertices is done by testing every possi
addition and selecting the one that decreasesJ(v) the most.
As this involves the alteration of the triangulation for ea
test, this is a computationally intensive approach to the pr
lem and would be infeasible for large data sets. Their e
phasis is on their ‘‘systolic’’~expansion-contraction! method
and classifier problems. The present paper is more conce
with model selection by the MDL; the problem class a
algorithms used to fit the model are not major concerns.

III. DESCRIPTION LENGTH
OF TRIANGULATION MODELS

Suppose we wish to compress the data in order to tran
it to someone else. To do so, we must encode suffic
information for the receiver to be able to reconstruct the d
completely. We can do this by using what Rissanen cal
‘‘two-part code’’ @6#. First, if we have a probability distribu
tion P on the data it may be used to define an optimal
coding of a realization of a time seriesw5$(yt ,xt)%. It is a
well-known result of coding theory@16# that one can encode
this information in a code of length bounded below
2 log2P(w) bits ~and this bound is approachable to bet
than one bit!. In fact, one can do better than this in th
present case because the model was constructed from
data. The data impose restrictions on the parameters
mated and hence on the allowable error vectors. The cor
tion for this is nontrivial and is discussed in@17#. We will
use the natural logarithm here so our code lengths will be
‘‘nats.’’ The model definese t5yt2 f (xt) and we have taken
P to be Gaussian. For the second part of the code, we m
encode information about our model. In our case, this me
that we must transmit the values of the vertex positionsv i
PRd and their heightshiPR.

Thus the total description length for our system is

L~w,v,h!5L„wu~v,h!…1L~v !1L~h!,

whereL(X) denotes the code length ofx. Since the param-
eter values are, in principle, known to arbitrary precision,
must truncate them in order to transmit them in a fin
length code. It is shown in@2# that the description length o
a parametera truncated to relative accuracyda is

L~ ā!5L* ~ d1/dae !1L* ~ d ln@2max$ā,1/ā%# e !,

where ā is the truncated value ofa and the functionL* is
given by

L* ~p!5 lnc1 lnp1 ln lnp1 ln ln lnp1•••,
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90 55ALLIE, MEES, JUDD, AND WATSON
with the series terminating as soon as one of the term
reduced to 0 or 1. The numberc is the cost to encode sma
integers and the shortest code length corresponds
c'2.865@6#.

The key to the minimum description length method is th
we may optimize over the truncation of these model para
eters; that is, we optimize overda as described below. Th
first term in the total description length will in general d
crease as the model size increases, due to better fitting, w
the other two terms will tend to increase with model siz
Hence the model selected by the minimum description len
represents a compromise between the competing desire
good fitting and model parsimony. It is worth noting that
the level of noise in the data decreases, we would expec
model selected by the MDL principle to grow. This is inde
observed in experiments.

We have restricted the use of the MDL to the selection
model size for a given model class. In principle, the MD
enables us to choose the best model from a range of m
classes. There are, however, practical difficulties to be o
come. Within a given model class, we are consistent in
choice of encoding and comparing the description length
sensible. If we mix model classes, then it is difficult to co
pare the code lengths of the two classes; the problem is
to comparing algorithm lengths in different programmi
languages. While the principles are well understood,
practical application of them has yet to be achieved. It
hoped to be able, in the near future, to include into the M
framework a wide range of model classes and the ability
choose between them.

A. ‘‘Empirical’’ MDL calculation

We will denote the precisions of the heights bya i and of
the vertex positions byb i . In order to calculatea i we follow
the procedure described in@2# whereby the precisiona i is
treated as a continuous parameter rather than a discrete
corresponding to truncation of a floating-point representa
of the heights. As our model may be written as a mat
equation

y5Lh,

the analysis is identical to that in@2#, and we obtain thea i by
solving the equation

~Qa! i51/a i ~5!

numerically. Here

Q5LTL/s2,

wheres25J(v)/n andn is the number of data points.
We now make an approximation and assume that the

tices are independent with regard to the choice of optim
precisions. We ignore the off-diagonal elements of the m
trix Q and so the solution to Eq.~5! is given simply by

a i5
1

AQii
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This is properly cautious as it causes us to overestimate
description length. We have observed the difference betw
calculating thea i exactly and this approximation to b
around 1–5 %. This has a negligible impact on the total
scription length calculation.

For the vertex positions, treating theb i as continuous
parameters is not very useful for practical calculations. O
needs to calculate the second derivative matrix]2L/]v i]v j
and for data sets of even modest size, this is a reason
large calculation. Hence we take a simpler and more dir
approach to the calculation; in effect, the calculation of t
b i is done in an ‘‘empirical’’ fashion.

We reproduce the effect of truncating the parameter~the
vertex coordinates! by adding or subtracting an appropria
amount to or from the floating point value for the parame
and calculating the description length of the model with th
truncated parameter value. This is done for successive t
cations until a minimum is found. This procedure is appli
to each coordinate of each vertex in turn. The range of tr
cations used correspond approximately to precisions ran
~in 1-bit steps! from 12 to 2 bits of accuracy in the param
eters. This procedure explicitly assumes the independenc
theb i in the same way that we did for thea i .

B. Approximate MDL calculations

We can make further approximations to the calculation
description length in order to save computation time. W
can, for example, use one precision for all the vertex po
tions. Three methods come to mind:~i! a fixed number of
bits ~or nats!, ~ii ! a fixed relative precision, and~iii ! a fixed
absolute precision for every vertex. Since we are interes
only in the model size that gives the minimum descripti
length, the actual values of the DL are unimportant. We h
observed experimentally that all three of the above meth
return minima at, or very close to, the same place as the m
complete DL calculation. The first method also allows
more efficient coding scheme to be used, as each param
is encoded in the same number of bits.

IV. EXAMPLES: ARTIFICIAL DATA SETS

A. Rössler system

The equations used were

ẋ52~y1z!, ẏ5x1ay, ż5bx1z~x2c!, ~6!

which generate the Ro¨ssler attractor. Herea, b, and c are
parameters; we useda50.36,b50.4, andc54.5. The data
were generated by numerical integration, with a fixed tim
step of 0.2, usingMATLAB . Dynamical noise with distribu-
tion N(0,0.01) was added at each time step. As the sc
time series, 750 points of thex coordinate was used. Thes
data were embedded in three dimensions with a lag of 8
the model was made to predict one time step ahead, tha
we chose to model the mapf defined by

yt5 f ~xt!,

where

xt5~yt21 ,yt29 ,yt217!.
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55 91RECONSTRUCTING NOISY DYNAMICAL SYSTEMS BY . . .
The lag was chosen to be close to 1/4 of the major perio
cycle of the data, as it has been found that for data sets
a dominant period, this choice gives ‘‘good’’ embeddings
has been shown elsewhere that the Ro¨ssler attractor may be
successfully embedded in three dimensions and this is
ported by calculations using the ‘‘false-nearest-neighbo
method on the data@18#.

The model chosen by the MDL principle contained
vertices and the residuals had a standard deviation
0.0098, in good agreeement with the known dynami
noise. To demonstrate that this model had in fact corre
extracted information about the dynamics of the system fr
the data, we produced sample trajectories of the model w
randomly chosen initial points. The data set and three tra
tories of the model are shown in Fig. 2.

The model is run with dynamical noise added at ea
step. The noise values used are chosen by a form of b
strapping@19# by randomly choosing one of the residuals
be the noise added at a given step. This type of ‘‘dynam
bootstrapping’’ has been found to give much more realis
trajectories. The analysis of this type of bootstrapping i
topic for further research.

In order to verify that the model orbits are indeed simi
to the data, we calculated the correlation dimension for s
eral sample trajectories and compared this to the dimen
for the original data. The method used to calculate dimens
is that described in@20#. This method produces an estima
of dimension as a function of ‘‘cutoff scale.’’ Figure 3 show
the results of such dimension calculations for the origi
data set and sample trajectories of the model. Although a
ing noise to the trajectories is the ‘‘right’’ thing to do as th
model as constructed includes this noise, Fig. 3 shows
this results in trajectories of greater dimension than the or
nal time series. This is probably due to the overly simplis
noise model and bootstrapping used. For example, if
noise has more effect in some areas of the reconstructed
space than in others, this should be reflected in our bootst
ping technique.

FIG. 2. Rössler system:~a! embedded data set,~b! trajectory of
the model with no added noise, and~c! and ~d! model trajectories
with added noise. The axesx1̂, x2̂, andx3̂ are the components o
the embedded vectorxt . Note that the model successfully repr
duces the characteristic folding.
ic
ith
t

p-
’’

of
l
ly

th
c-

h
ot-

al
c
a

r
v-
on
n

l
d-

at
i-
c
e
ate
p-

B. Hénon map

For this example we use the mapf : R2→R2 defined by

f ~x,y!5~12ax21y,by!,

with parametersa51.4 andb50.3. We generated a time
series of 1000 points by iterating this map, with noise
distribution N(0,0.001) added at each iteration. Observ
tional noise with distributionN(0,0.1) was then added. We
constructed separate models of each component of the
f .
The x-component model had 22 vertices in total; th

y-component model contained only the three vertices enc
ing the data, giving~as expected!, a linear model. Trajecto-
ries of the model, with and without added noise, appear to
qualitatively similar to the original data; see Fig. 4. Th

FIG. 3. Rössler system. Correlation dimension as a function
cutoff scale for the original data~solid line! and trajectories of the
model ~dashed lines!. Model trajectories created~a! without dy-
namical noise and~b! with dynamical noise are shown.

FIG. 4. Hénon map: ~a! Data set before observational nois
added.~b! data set with observational noise;~c! model trajectory,
created with no noise; and~d! model trajectory with noise added.



c

d
e
s
l

h
,
m
b
is

a
-

0
h

e-
ans

e

ws
he
y-
the
ut
the
ies.
the
he

ms
m-
of
r
ear
e-
el,

,
th

e

s

or

r
l

92 55ALLIE, MEES, JUDD, AND WATSON
model also possesses periodic points up to period 4 in lo
tions similar to the original system and with~mostly! similar
Jacobians at the periodic points; see Fig. 5. The perio
points were found using an algorithm that can locate all fix
points of a triangulated map in a finite number of step
Space precludes our describing it here; it is based on ear
work ~see, for example,@21#! and we will describe it else-
where. Recurrence diagrams@22# for model trajectories indi-
cate that no period-3 point exists, in agreement with t
known map. Note that when looking for periodic points
there were some spurious points found, but they were so
distance from the data. We could not expect the model to
correct in regions about which it had no information. This
why the model did not reproduce the fixed point a
(21.13,20.34); there were no data near that point whe
building the model.

V. EXAMPLES: EXPERIMENTAL DATA

A. Electronic circuit

To test our method on experimental data we used a sca
time series consisting of voltage measurements from a p
ticular nonlinear electronic circuit. This particular circuit dis
plays chaotic behavior; for details of the circuit, see@23#.
The data set used to construct the model consisted of 2
points. The data was embedded in three dimensions wit

FIG. 5. Model trajectory with the fixed points up to period 4
labeled by their period. Crosses are the actual fixed points of
Hénon map and circles are the fixed points of the model.

FIG. 6. Electronic circuit: 1000 points of the data as a tim
series and embedded inR3. Here we havey(t)5yt and the axes
x1̂, x2̂, andx3̂ are the components of the embedded vectorxt .
a-

ic
d
.
ier

e

e
e

t
n

lar
r-

00
a

lag of 5 and the model was constructed to predict one tim
step ahead. The embedding dimension was chosen by me
of the false-nearest-neighbor method@18# and the lag was
chosen to be close to 1/4 of the dominant period of the tim
series.

The MDL-selected model had 71 vertices. Figure 6 sho
the data set and Fig. 7 shows a typical trajectory of t
model. The model trajectory was produced using the d
namical bootstrapping method described above; however,
residuals were very small and trajectories produced witho
noise show the same qualitative behavior. Figure 8 shows
dimension estimates for the data and the model trajector
We note that the model appears to have reconstructed
system quite well, in terms of both the appearance of t
attractor and the dimension estimates.

VI. SUMMARY AND CONCLUSIONS

This paper describes how to model dynamical syste
from noisy data, using triangulations. It is intended as a de
onstration of the potential benefits, problems, and features
modeling using the minimum description length criteria fo
selecting the model. The model class was piecewise lin
interpolation on triangulations. The calculation of the d
scription length used a complete specification of the mod
something that has not been done before in this context.

e

FIG. 7. Electronic circuit: 1000 point trajectory of the model a
a time series and embedded inR3. Here we havey(t)5yt and the
axesx1̂, x2̂, and x3̂ are the components of the embedded vect
xt .

FIG. 8. Correlation dimension as a function of cutoff scale fo
the original data~solid line! and nine trajectories of the mode
~dashed lines.!
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55 93RECONSTRUCTING NOISY DYNAMICAL SYSTEMS BY . . .
The techniques described were applied to artificial d
sets and some experimental data. The models of the Ro¨ssler
system and the experimental data produced trajectories
were very similar in appearance to the original data sets
had similar correlation dimensions. It appeared that the m
els had captured the essential dynamics of the systems.
Hénon model also produced trajectories qualitatively sim
to the known system. This model reproduced the posit
and character of periodic points up to period 4.

There are some known sources of errors in the techniq
described in this paper. The first of these is the lack
smoothness of the model class. It seems, however, tha
practice, this is not a major problem. Another error sourc
the difficulty of the~nonlinear, high-dimensional! optimiza-
tion problem of finding theminimumdescription length. We
have a local minimum to an approximation of the descript
y

-

:
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at
nd
d-
he
r
n
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length. In principle, of course, this is unsatisfactory; in pra
tice, the success of the models will decide the validity of o
approximations. The final source of error is in the assum
tion of normality of the residuals implicit in solving a leas
squares problem. Relaxing this assumption means ma
more of an effort to model explicitly the noise present in t
data. This will make the modeling process much more di
cult to implement and is an area of ongoing research.
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