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Reconstructing noisy dynamical systems by triangulations
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We show how to construct triangulations of noisy data from dynamical systems. We model the dynamics
using piecewise linear @ models defined over the triangulation. The number and positions of vertices of the
triangulation are selected by the minimum description length criterion. We test the method on two artificial
data sets and on experimental data from a chaotic electronic circuit. The models reproduce the qualitative
aspects of the data as well as quantitative aspects such as correlation dimension and periodic points.
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I. INTRODUCTION method, we discuss some example applications and conclude
with a summary, caveats, and comments on future research.
This paper deals with an approach to modeling dynamical
systems from data, particularly scalar-valued time series. In Il. OUTLINE OF METHOD
recent years there has been a great deal of work in the field ) _ )
of modeling from time series with particular emphasis on _ Consider a dynamical system with state vectpesM,
low-dimensional nonlinear systems that exhibit chaotic beyvhere M IS an n—dlmensmnal mamfo_ld. Assume that the
havior. This paper relates closely to the work describdd jn dynamics are described by the equation
and[2]. Mees[1] deals with the triangulation of noise-free
data, while Mees and Jud@] use the concept ahinimum
description lengtiMDL ) to select the optimal model from a
given class(specifically, radial basis modelsThe present
work uses piecewise linear or piecewié models based on
the tnangulat_lon of the state space. yVi=b(z)+ 1,
In comparison to other model class@ee, for example,
[3-5]) we note that our model class is very flexible in its yhere s, is the observational noise. We then empeg] the
ability to fit the data, is continuous, local, and does not posata sefy,} in d dimensions to give statd,}. An example

sess any artificial symmetricf. radial basis models.We  of such an embedding is a time-delay embedding with fixed
also note that the size of the model itself will be determined:|aq” 7 given by

from the data, reducing the number of arbitrarily chosen pa-
rameters. . i . . X’[z(ytv e vy’[f(dfl)f) ERd;

Rather than simply constructing the triangulation of all
the data points we attempt to find a “minimal” triangulation however, the embedding need not be as regular as this, and
that best models the data. The criterion that is used to selefiideed we may choose particular embedding strategies de-
the minimal triangulation is that of description length, aspending on the information we wish to extract from the
described by Rissang6]. The essential idea adopted here ismodel. We describe the dynamics of the embedded system
that we choose the model with the shortest code lefigth py
some optimal encoding schejrtbat enables us to reproduce
completely the data set. Following a description of the Vir1=T(X) + € 1)

Z1=9(Z) + &,

where &, is the dynamical noise present. We observe the
system through a measurement procgsil — R such that

and it is precisely this functiofi:R°—R that we desire to
*Permanent and mailing address: CADO, University of Westernmodel. In general, the dynamics should be described by

Australia, Nedlands, 6907, Australia. Vi+1= (X, €); however, for small noise, Eql) is usually a
"Permanent address: CADO, University of Western Australia,good approximatione, is a random variate about which we
Nedlands, 6907, Australia. can, in general, say very little.
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FIG. 1. Delaunay triangulatiotheavy lineg and its dual, the
Dirchlet tesselationlight lines), for eight points(circles in the
plane.

A. Interpolation on triangulations

The mapf defines a hypersurface iR%". Our model

consists of describing this hypersurface in some way. To ds

this, we make use of piecewise interpolation on triangula
tions ind dimensions.

A triangulation of a set of point¥ € RY is a collection of
d-dimensional simplices with disjoint interiors and vertices
chosen fronV. There are many triangulations for a given set
of points. One of the more useful is the Delaunay triangula
tion [9], which we describe by considering its dual, the Di-
richlet tesselation(The Dirichlet tesselation is also called the
Voronoi tesselation, natural-neighbor tiling, or Thiessen til-
ing in the literature. Given a set of vertice¥={v;}, we
associate with eact, the region consisting of all points that
are closer tw; than to any other point iv. That is, the tile
belonging tov; is

T(vi)={xe R%|x—v;|<|x—v;|Vj#i}.

ALLIE, MEES, JUDD, AND WATSON

f0= > NOOF(v)).
i e N(x)

Some results regarding this type of approximation were
proved in[1]. They are reproduced here for convenience.

(i) If feC! thenf(x)="f(x)+0(A), where
A=diametef{x}U{v;:i e N(x)}].

(i) If f is affine thenf=f.

(ii ) If we chooseN(x) to index the simplex containing
X then our approximation is piecewise linear and continuous
in x.

(iv) If we chooseN(x) so that thex;(x) are the so-called
subtile weightd10] then our approximation i€* in x for
xecofv;\U{v;}, where cox) denotes the convex hull of
x. These weightgalso called natural-neighbor coordinates
are defined as follows. If we were to add the pointo the
tesselation, it would create a tilE(x) that is the union of
ections of tiles from the existing tesselation. The subtile
weight corresponding to a vertex is the normalizedLe-
besgug volume of the section of (v;), which would belong
to x.

Item (i) above justifies our use of the Delaunay triangula-
tion. The Delaunay triangulation has the property that it
minimizes, on average, the diameter of the simplices formed
[9,12,13,1 and hence minimizes the average error in ap-
proximation that is due to the choice of triangulation.

We would expect this model class to perform at least as
well as other local models and to compare well with global
models such as radial basis models. A comparison of MDL-
selected radial basis models and the models described here is
a subject for future research. For data from nonlinear dy-
namical systems where the dynamics is not overwhelmed by
noise, we would expect our models to perform significantly

better than statistical models such as the threshold autore-
If two tiles share a face, then we say that the correspondingressive models of Tonfd4]. Of course, for any given data
vertices are neighbors. The collection of such tiles forms thé&et, the choice of model is best determined by direct com-
Dirichlet tesselation. The dual of this structure, in which weparison. It is hoped that MDL and flexible model classes
join neighbors by line segments, is the Delaunay triangulatwhich incorporate other models as special caseske the
tion of V. The Delaunay triangulation has the property thatselection somewhat less arbitrary, but we are still far from
its simplices are most nearly equiangular. The Delaunay tribeing able to determine automatically the best model for a
angulation is discussed in detail jA0] and efficient algo- gIVen case.
rithms for computing the Delaunay triangulation are de-
scribed in[11]. Figure 1 shows the Delaunay triangulation
and its dual for eight points in the plane.

We now describe how to use triangulations to approxi-
mate a surface.

Definition. \j(x), i e N(x), are local coordinatesfor x

with respect tofv;}" , if

B. Fitting to noisy data

The approximation above assumes that we know the val-
ues off (v;) exactly. In general, of course, this is not true. If
our v; are data points then we have noisy data values as an
approximation tdf (v;). If the v; are not data points, then we
have noa priori information about the (v;). From now on,
we will label the approximation td(v;) ash;=f(v;) and

x= N (X)v; call theh; “heights.” The approximation is now written
ieN(x)
and foo= 2 noh,
ieN(x)
S ax=1 whereN(x) is now a set of indices to the sgt;}. We might
i Nl i)=1, choose the sdv;} to be a subset of our data poidts}, but

it is not required.
Assuming we have chosen thein some way, we wish to
choose thén; so as to give the best approximationftgiven

whereN(x) is a set of indices to the séb;}.
An approximation tof (x) is then given by
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{x:} and{y,}. We define the local coordinates as previouslyvertices and declaring a local minimum if we have not found
for j e N(x;) and\j(x;)=0 for j ¢ N(x;). We further define a smaller value after a certain number of increases in model
a matrixA with elements\;; =\;(x;). We can then write the size.
approximation as a matrix equation thus Cubanski and Cyganskil5] describe an algorithm that
appears to be similar to our own. In particular they perform
- an optimal selection of vertices by a similar process of ex-
fx)= 2 \j(x)h; pansion and contraction. Their approach differs in that they
JeNG) use a fixedand arbitrary number of vertices, and the intro-
duction of new vertices is done by testing every possible
=2 \j(xph; (2)  addition and selecting the one that decreaKe9 the most.
! As this involves the alteration of the triangulation for each
test, this is a computationally intensive approach to the prob-

=(Ah);, (3 lem and would be infeasible for large data sets. Their em-
phasis is on their “systolic’{expansion-contractiormethod
whereh=(hq, ... ,hnv)T. Recalling that we would likg; to  and classifier problems. The present paper is more concerned

with model selection by the MDL; the problem class and

be nearf(x;) and takinge, in 1, we solve for theh; b ) . )
(xi) de ed algorithms used to fit the model are not major concerns.

solving the least-squares problem defined by minimizing

J(v,h)=(y—Ah)T(y—Ah) 4 lll. DESCRIPTION LENGTH
OF TRIANGULATION MODELS
over h, wherey=(yy, ...y, andv denotes the set of
vertices. Let the minimum ai(v,h) overh be J(v). Speci-
fying v determines the model fully, and we now consider
how to do this.

Suppose we wish to compress the data in order to transmit
it to someone else. To do so, we must encode sufficient
information for the receiver to be able to reconstruct the data
completely. We can do this by using what Rissanen calls a
“two-part code” [6]. First, if we have a probability distribu-

C. Vertex selection tion P on the data it may be used to define an optimal en-

We now deal with the problem of how to select the ver-coding of a realization of a time series={(y,,x,)}. It is a
tices. We choose the from {x,} initially, but then allow the ~ Well-known result of coding theory16] that one can encode
vertices to move in an attempt to find a better model. In ordethis information in a code of length bounded below by
to obtain a set of vertices which are nearly optimal for a—10g,P(w) bits (and this bound is approachable to better
given model sizénumber of verticels we have used an al- than one bit In fact, one can do better than this in the
gorithm of model expansion and contraction. We allow thepresent case because the model was constructed from the
model to grow byk vertices by selecting thk data points data. The data impose restrictions on the parameters esti-
with the worst fitted data values. That is, the data points witimated and hence on the allowable error vectors. The correc-
the largest values df;— f(x;)|. We then remove the ver-  tion for this is nontrivial and is discussed 7). We will
tices which arg(or are closest tfothe data points which are Use the natural Ioganthm here so our code lengths will be in
best fitted. This process of growing and shrinking the mode| Nats.” The model defines;=y;—f(x;) and we have taken
continues until either there is no change in the set of vertice§ t0 be Gaussian. For the second part of the code, we must

or J(v) does not decrease. encode information about our model. In our case, this means
The algorithm is as follows that we must transmit the values of the vertex positions
(i) Construct the initial affine model usirdy+ 1 vertices € R and their heights,  R. _

that form a single simplex containing the entire data set. Thus the total description length for our system is
(i) Select thek data points with the worst-fitted data val-

ues. Bring these points into the triangulation. L(w,v,h)=L(w]|(v,h))+L(v)+L(h),

(iii) Select thek vertices with the best-fitted data values.
If the vertex is not a data point, use the closest data point.

Remove these points from the triangulation. whereL (X) denotes the code length gf Since the param-
(iv) Add a small random perturbation to the vertices andeter values are, in principle, known to arbitrary precision, we
keep the positions of vertices that give the smallkst). must truncate them in order to transmit them in a finite
(v) If the triangulation has changed ardfv) has de- length code. It is shown if2] that the description length of
creased, go to stefii). a parametea truncated to relative accuragy is
(vi) Calculate the description length for the current model
size. L(a)=L*([1/8,]) + L* ([In[2maxa,1/a}]]),

(vii) Have we found a minimum of description length as a
function of number of vertices? If so, stop now. o

(viii) Increase the model size by one by bringing thewherea is the truncated value af and the functiorL* is
worst-fitted point into the triangulation and go to si@p. given by

We identify a minimum in the description lengtbL) as a
function of model size by storing the DL for each humber of L*(p)=Inc+Inp+Ininp+Inininp+- - -,
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with the series terminating as soon as one of the terms i$his is properly cautious as it causes us to overestimate the
reduced to 0 or 1. The numberis the cost to encode small description length. We have observed the difference between
integers and the shortest code length corresponds tealculating the«; exactly and this approximation to be
c~2.865[6]. around 1-5 %. This has a negligible impact on the total de-
The key to the minimum description length method is thatscription length calculation.
we may optimize over the truncation of these model param- For the vertex positions, treating the as continuous
eters; that is, we optimize ove}, as described below. The parameters is not very useful for practical calculations. One
first term in the total description length will in general de- needs to calculate the second derivative maa?ix/aviavj
crease as the model size increases, due to better fitting, whitnd for data sets of even modest size, this is a reasonably
the other two terms will tend to increase with model size.large calculation. Hence we take a simpler and more direct
Hence the model selected by the minimum description lengtlapproach to the calculation; in effect, the calculation of the
represents a compromise between the competing desires 8f is done in an “empirical” fashion.
good fitting and model parsimony. It is worth noting that as  We reproduce the effect of truncating the paramétes
the level of noise in the data decreases, we would expect theertex coordinatgsby adding or subtracting an appropriate
model selected by the MDL principle to grow. This is indeedamount to or from the floating point value for the parameter
observed in experiments. and calculating the description length of the model with that
We have restricted the use of the MDL to the selection oftruncated parameter value. This is done for successive trun-
model size for a given model class. In principle, the MDL cations until a minimum is found. This procedure is applied
enables us to choose the best model from a range of modtd each coordinate of each vertex in turn. The range of trun-
classes. There are, however, practical difficulties to be overeations used correspond approximately to precisions ranging
come. Within a given model class, we are consistent in oufin 1-bit step$ from 12 to 2 bits of accuracy in the param-
choice of encoding and comparing the description lengths igters. This procedure explicitly assumes the independence of
sensible. If we mix model classes, then it is difficult to com-the g; in the same way that we did for the .
pare the code lengths of the two classes; the problem is akin
to comparing algorithm lengths in different programming B. Approximate MDL calculations

languages. While the principles are well understood, the ke furth L h lculati f
practical application of them has yet to be achieved. It is We can make further approximations to the calculation o

hoped to be able, in the near future, to include into the MDLAeSCTiPtion length in order to save computation time. We

framework a wide range of model classes and the ability t&a": for example, use one precision for all the vertex posi-
choose between them. tions. Three methods come to min@d) a fixed number of

bits (or natg, (ii) a fixed relative precision, angi) a fixed
absolute precision for every vertex. Since we are interested
A. “Empirical” MDL calculation only in the model size that gives the minimum description
We will denote the precisions of the heights iyand of  length, the actual values of the DL are unimportant. We have
the vertex positions b, . In order to calculatey; we follow  observed experimentally that all three of the above methods
the procedure described [2] whereby the precisiom; is ~ return minima at, or very close to, the same place as the more
treated as a continuous parameter rather than a discrete of@mplete DL calculation. The first method also allows a
corresponding to truncation of a floating-point representatiofnore efficient coding scheme to be used, as each parameter
of the heights. As our model may be written as a matrixis encoded in the same number of bits.
equation
IV. EXAMPLES: ARTIFICIAL DATA SETS

y=Ah, )
A. Rossler system
the analysis is identical to that 2], and we obtain the; by The equations used were
solving the equation ) . .
Xx=—(y+2z), y=x+ay, z=bx+z(x—c), (6
(Qa)i=1la; ) . .
which generate the Rasler attractor. Her@, b, andc are
: parameters; we usea= 0.36,b=0.4, andc=4.5. The data
numerically. Here T . ; ) .
were generated by numerical integration, with a fixed time
step of 0.2, usinguATLAB. Dynamical noise with distribu-
Q=ATAl0?, P o y

tion N(0,0.01) was added at each time step. As the scalar
) ) _ time series, 750 points of the coordinate was used. These
wheres“=J(v)/n andn is the number of data points. data were embedded in three dimensions with a lag of 8 and

~ We now make an approximation and assume that the vefhe model was made to predict one time step ahead, that is,
tices are independent with regard to the choice of optimajye chose to model the mdpdefined by

precisions. We ignore the off-diagonal elements of the ma-
trix Q and so the solution to E@5) is given simply by yi=Tf(xp),

1 where
ai e —

\/Q_ii %= (Yi-1,Yt-9:Yi-17)-
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FIG. 3. Rasler system. Correlation dimension as a function of
cutoff scale for the original datésolid line) and trajectories of the
model (dashed lines Model trajectories creater) without dy-
namical noise andgb) with dynamical noise are shown.

FIG. 2. Rasler system(a) embedded data sdb) trajectory of
the model with no added n(A)iseA, ano) a[\d (d) model trajectories
with added noise. The axed, x2, andx3 are the components of
the embedded vectot;. Note that the model successfully repro-

duces the characteristic folding. B. Hénon map

The lag was chosen to be close to 1/4 of the major periodic
cycle of the data, as it has been found that for data sets with
a dominant period, this choice gives “good” embeddings. It f(x,y)=(1—ax2+y,by),
has been shown elsewhere that thesfer attractor may be

successfully embedded in three dimensions and this is sup-

: : “ - o ,with parametersa=1.4 andb=0.3. We generated a time
fnoggﬁgdbgniilecu&ggl%? using the "false-nearest-neighbors series of 1000 points by iterating this map, with noise of

The model chosen by the MDL principle contained 2791istributic_>n N(Q,O.QOl) aplded at each iteration. Observa-
vertices and the residuals had a standard deviation dfonal noise with distributioN(0,0.1) was then added. We
0.0098, in good agreeement with the known dynamicaponstructed separate models of each component of the map
noise. To demonstrate that this model had in fact correctl;f-
extracted information about the dynamics of the system from The x-component model had 22 vertices in total; the
the data, we produced sample trajectories of the model withi-component model contained only the three vertices enclos-
randomly chosen initial points. The data set and three trajedng the data, givingas expecteqd a linear model. Trajecto-
tories of the model are shown in Fig. 2. ries of the model, with and without added noise, appear to be

The model is run with dynamical noise added at eactgualitatively similar to the original data; see Fig. 4. The
step. The noise values used are chosen by a form of boot-
strapping[19] by randomly choosing one of the residuals to @ ®)
be the noise added at a given step. This type of “dynamical ©°5 05
bootstrapping” has been found to give much more realistic
trajectories. The analysis of this type of bootstrapping is a
topic for further research. > 0

In order to verify that the model orbits are indeed similar
to the data, we calculated the correlation dimension for sev-
eral sample trajectories and compared this to the dimension -05,——; . ; 2 -05;
for the original data. The method used to calculate dimension X
is that described if20]. This method produces an estimate  os 05
of dimension as a function of “cutoff scale.” Figure 3 shows =
the results of such dimension calculations for the original \*m
data set and sample trajectories of the model. Although add~. o \%w - 0
ing noise to the trajectories is the “right” thing to do as the o
model as constructed includes this noise, Fig. 3 shows that P
this results in trajectories of greater dimension than the origi- _s 05
nal time series. This is probably due to the overly simplistic 2 . ! 2 R . 1 2
noise model and bootstrapping used. For example, if the
noise has more effect in some areas of the reconstructed state FIG. 4. Heon map:(a) Data set before observational noise
space than in others, this should be reflected in our bootstrapdded.(b) data set with observational nois@) model trajectory,
ping technique. created with no noise; an@) model trajectory with noise added.

For this example we use the mépR2— R? defined by
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FIG. 7. Electronic circuit: 1000 point trajectory of the model as
a time series and pmbedded]Rﬁ. Here we have/(t) =y, and the

» axesx1, x2, andx3 are the components of the embedded vector
~0.31 w‘_w_..-ﬂ"'x g Xt -

lag of 5 and the model was constructed to predict one time-
-05 j ' { : j : ' step ahead. The embedding dimension was chosen by means
X ' of the false-nearest-neighbor methfd8] and the lag was
chosen to be close to 1/4 of the dominant period of the time
FIG. 5. Model trajectory with the fixed points up to period 4, Series.
labeled by their period. Crosses are the actual fixed points of the The MDL-selected model had 71 vertices. Figure 6 shows
Henon map and circles are the fixed points of the model. the data set and Fig. 7 shows a typical trajectory of the
model. The model trajectory was produced using the dy-
model also possesses periodic points up to period 4 in locaramical bootstrapping method described above; however, the
tions similar to the original system and witmostly) similar ~ residuals were very small and trajectories produced without
Jacobians at the periodic points; see Fig. 5. The periodigoise show the same qualitative behavior. Figure 8 shows the
points were found using an algorithm that can locate all fixeddlimension estimates for the data and the model trajectories.
points of a triangulated map in a finite number of stepsWe note that the model appears to have reconstructed the
Space precludes our describing it here; it is based on earli@ystem quite well, in terms of both the appearance of the
work (see, for example[21]) and we will describe it else- attractor and the dimension estimates.
where. Recurrence diagraf®2] for model trajectories indi-
cate that no period-3 point exists, in agreement with the VI. SUMMARY AND CONCLUSIONS
known map. Note that when looking for periodic points, _ ) i
there were some spurious points found, but they were some ' NiS paper describes how to model dynamical systems

distance from the data. We could not expect the model to b&0M noisy data, using triangulations. It is intended as a dem-
correct in regions about which it had no information. This igonstration of the potential benefits, problems, and features of

why the model did not reproduce the fixed point at Modeling using the minimum description length criteria for

(—1.13-0.34): there were no data near that point whenselecting the model. The model class was piecewise linear
building’ the model. interpolation on triangulations. The calculation of the de-

scription length used a complete specification of the model,
something that has not been done before in this context.

V. EXAMPLES: EXPERIMENTAL DATA

A. Electronic circuit 3 . . . .

To test our method on experimental data we used a scalar
time series consisting of voltage measurements from a par- 2s- .
ticular nonlinear electronic circuit. This particular circuit dis-
plays chaotic behavior; for details of the circuit, J&3].

The data set used to construct the model consisted of 20008
points. The data was embedded in three dimensions with a g

Correlation di

2 2 0 0 . . . :
s} _500 1000 2 1 Is) X -1 -2 -2 X -2.5 -2 -1.5 -1 -0.5 0
time t 2 Cut-off scale

FIG. 6. Electronic circuit: 1000 points of the data as a time
series and embedded it’. Here we havey(t)=y, and the axes
x1, x2, andx3 are the components of the embedded vegtor

FIG. 8. Correlation dimension as a function of cutoff scale for
the original data(solid line) and nine trajectories of the model
(dashed lines.
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The techniques described were applied to artificial datdength. In principle, of course, this is unsatisfactory; in prac-
sets and some experimental data. The models of tlssIBo tice, the success of the models will decide the validity of our
system and the experimental data produced trajectories thapproximations. The final source of error is in the assump-
were very similar in appearance to the original data sets antlon of normality of the residuals implicit in solving a least-
had similar correlation dimensions. It appeared that the modsquares problem. Relaxing this assumption means making
els had captured the essential dynamics of the systems. Theore of an effort to model explicitly the noise present in the
Henon model also produced trajectories qualitatively similardata. This will make the modeling process much more diffi-
to the known system. This model reproduced the positiortult to implement and is an area of ongoing research.
and character of periodic points up to period 4.

There are some known sources of errors in the techniques
described in this paper. The first of these is the lack of ACKNOWLEDGMENTS
smoothness of the model class. It seems, however, that, in This research was partially supported by a grant from the
practice, this is not a major problem. Another error source iAustralian Research Council. S.A. and A.M. wish to thank
the difficulty of the (nonlinear, high-dimensionabptimiza-  The University of Western Australia for leave and financial
tion problem of finding theminimumdescription length. We support. We thank Henry Abarbanel for providing us with
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